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4 Spectral LES for isotropic turbulence

We have seen that a major drawback of the eddy viscosity assumption in
physical space is the nonexistence of a spectral gap between resolved and
subgrid scales. This is an argument in favor of working in Fourier space, where
we will see that the lack of a spectral gap may be dealt with in some sense.

4.1 Spectral eddy viscosity and diffusivity

We assume that the Navier—Stokes equation is written in Fourier space. This
requires statistical homogeneity in the three directions of space, but we will see
in the following how to handle flows with only one direction of inhomogeneity.
Let ﬁ,-(l?, t) and ,5(12, t) be the spatial Fourier transforms of, respectively, the
velocity and passive-scalar fields introduced in Chapter 1. As already stressed,
they are defined in the framework of generalized functions.! The filter consists
of a sharp cutoff filter simply clipping all the modes larger than k¢, where
kc = m/Ax is the cutoff wavenumber obtained when one uses a pseudo-
spectral method in a given direction of periodicity.
We write the Navier—Stokes equation in Fourier space as

9 . - - -
Sk )+ v+ vi(klkc)KP i, (k, t)
L phta=k B R R
= —iky P;;(k) uj(p, )im(q, )dp. (4.1)
1P1.1G | <kc
The spectral eddy viscosity vt(lz |kc) is defined by
pi=k

vk Ik (k. 1) = ik Pyy() (B, Diin(G, 0)dp.  (4.2)
|Plorlg |>kc

! Discretized equivalents correspond to the discrete Fourier transforms of flows in spatially
periodic domains.
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At this point, it may not be positive or even real. The condition p + ¢ = k
is a “resonant-triad condition” resulting from the convolution coming from
the Fourier transform of a product. The r.h.s. of Eq. (4.1) corresponds to a
resolved transfer. A spectral eddy diffusivity for the passive scalar may be
defined in the same way by writing the passive-scalar equation in Fourier
space

pri=k

D5 1) + [ + ki RIkEA (R, 1) = —ik, [ a0i.ap
ot 17117 <kc
4.3)
with
. . PHg=k
Rk (E, ) = ik, /| BN dE
Plorlq|=kc

Expressions (4.2) and (4.4) give exact expressions of the eddy coefficients.
They are, however, useless because they involve subgrid quantities. In fact, the
eddy coefficients can be evaluated at the level of kinetic-energy and passive-
scalar spectra evolution equations obtained with the aid of two-point closures
of three-dimensional isotropic turbulence.

It is in this context that the concept of k-dependent eddy viscosity was first
introduced by Kraichnan [147]. The spectral eddy diffusivity for a passive
scalar was introduced by Chollet and Lesieur [42]. Kraichnan used the so-
called test-field model. We work using a slightly different closure called the
eddy-damped quasi-normal Markovian theory introduced by Orszag [224,
225] (see also André and Lesieur [6] and Lesieur [170] for details). We first
briefly recall the main lines of this model.

4.2 EDQNM theory

In the EDQNM theory, which is easily manageable only in the case of isotropic
turbulence, the fourth-order cumulants in the hierarchy of moments equations
are supposed to relax the third-order moments linearly in the same quali-
tative way that the molecular viscosity does. Thus, a time 6y, characterizing
this relaxation is introduced. The EDQNM gives for isotropic turbulence the
following evolution equation for the kinetic-energy spectrum E(k, ¢):

d 2
— + 20k ) Ek, 1)
at

k
- f fA 4 dq 810 bCh, . DE@. O Ep. 1)~ p*ECE. )

(4.5)
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where the integration is carried out in the domain A; of the (p, g) plane
such that (k, p, ¢) can be the sides of a triangle and thus satisfy triangular
inequalities. The nondimensional coefficient

bik, p.g) = E(xy +2') (4.6)

is defined in terms of the cosines (x, y, z) of the interior angles of the triangle
formed by the resonant triad (k, p, ¢). The time 6y, (¢) is given by

1 — o [Hipg v +p*+¢M)t

Opps = 4.7
9= e TV T ) *7
with
Kkpg = Mk + Up + g

and

P 172

M%:a{/’ﬁE@Jwﬂ ) (4.8)
0

The constant @, is adjusted in such a way that the kinetic-energy flux is equal
to € in a Kolmogorov cascade of infinite length, as done in André and Lesieur
[6]. One finds a¢; = 0.218 Ci/ . An analogous equation may be written for
the passive-scalar spectrum E ,(k, t) with a scalar transfer involving products
EE,. Let us present now some recent EDQNM results of decaying isotropic
turbulence at high or very high Reynolds number obtained by Lesieur and
Ossia[174]. The code used is the one developed by Lesieur and Schertzer [164]
inwhich nonlocal interactions? are treated separately and included analytically
in the kinetic-energy transfer term in the EDQNM spectral evolution equation.
Details are also given in Lesieur ([170], pp. 231-235). Wavenumbers are
discretized logarithmically in the form

ky = 8k 2= D/F 4.9)

with L ranging from 1 to a maximum value Lg. In all calculations, F' was
taken equal to 8, which is twice as large as used in former calculations of this
type done in Grenoble and should guarantee a higher precision.? Calling kyqx
the maximum wavenumber, we have also

kmax - 3/4
ki(0) 7RO

(4.10)

2 Nonlocal interactions are those involving extremely distinct wavenumbers and thus very
elongated triads.

3 Comparisons with calculations done with F = 4 show that the difference of results is not
very substantial, and so the latter value should be recommended, considering the much
shorter computational times in this case.
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Figure 4.1. Kinetic-energy spectrum evolution in a decaying EDQNM calculation with Ry ) ~
1.70 x 10°.

with 4 equal to 1 and 3 in the decaying and forced calculations, respectively
(Ry; (0 is a large-scale Reynolds number defined momentarily). This is lower
than the value 8 proposed in Lesieur [170], but it permits a good-enough
capturing of the dissipative range and results in a substantial reduction of
computing time. These calculations have in fact been done on a PC/LINUX
machine.

In decaying calculations, the initial kinetic-energy spectrum is

' s K

where A4 is a normalization constant chosen such that fok“““E (k, 0)dk =
3v3 = 1. The time unit is the initial large-eddy turnover time [vok;(0)]~".
The constant a; corresponds to Cx = 1.40. The initial large-scale Reynolds
number is Ry, ) = vo/vk;(0).

We first present a calculation with s = 8, 8§k = 0.125, k;(0) = 2, and
Ry,0) ~ 1.70 x 10°. Figure 4.1 displays the time evolution of the kinetic-
energy spectrum E(k, t) for this run, up to 100 turnover times. We see very
clearly the establishment of an ultraviolet inertial-type range whose slope may
be checked to be (on this log—log plot) very close to the £~/ Kolmogorov law
along more than five decades. In fact this point will be explored later by con-
sidering compensated spectra e “2/3 k>3 E(k, t). We see also on the figure the
rapid formation of a k* infrared spectrum. This corresponds to the k* infrared
spectral backscatter, which will be discussed later. At the end of the evolution
(t = 100), the Reynolds number based on the Taylor microscale and already
defined in Chapter 1 is R; ~ 72,600. This is huge compared with laboratory
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Figure 4.2. Kolmogorov-compensated kinetic-energy spectrum evolution (in dissipative units)
corresponding to the EDQNM run of Figure 4.1.

or even environmental situations and might be encountered in astrophysics.
Figure 4.2 shows for the run the Mammoth-shaped function M (k,, t) (intro-
duced Chapter 1 on the r.h.s. of Eq. (1.47), with k, = kn). The vertical lines
correspond to spectra early at times. At later times, we get a perfect super-
position of the curves at high wavenumbers, which indicates the validity of
Kolmogorov similarity. At low wavenumbers, the dark area represents a decay
of compensated spectra, which can be interpreted as the “Mammoth losing
fat from the back.™ At the end of the evolution there is a two-decade real
compensated plateau at Cx = 1.4, and the spectral-bump size is one decade
long. It is clear here that the limit of infinite Reynolds number, which would
yield a Kolmogorov k~>/3 spectrum extending to infinity, is just a mathemat-
ical view that cannot be reproduced in these calculations. However, Lesieur
and Ossia [174] show that at such a high Reynolds number a limit curve is ob-
tained for the skewness s(#) defined by Eq. (1.33). The curve can be obtained
from the following relation (see Orszag [225]):

135\ /2 +oo
= (== D(t)73/? KTk, t)dk, 4.12
s(1) (98) ) /0 (k. 1) (4.12)

4 A former French minister for education used to say that he would remove the fat off the
national education mammoth.
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where T (k, t) is the kinetic-energy transfer given here by the r.h.s. of Eq. (4.5).
The time evolution from zero to infinity of this limit skewness displays first a
rise to the maximum value of 1.132 attained at # &~ 4.1, then an abrupt drop
to a plateau value of 0.547 reached at t ~ 4.8, and is conserved exactly above
up to + = 100. This evolution is explained in Lesieur [170] as a transition
between an initial inviscid skewness growth® to a skewness determined by a
balance between vortex stretching and molecular dissipation terms in the r.h.s.
of the enstrophy time-evolution equation. This yields a skewness constant
with time if enstrophy and palinstrophy are assumed to be dominated by
inertial and dissipative wavenumbers and scale on Kolmogorov dissipative
units (Batchelor [18], Orszag [225]).

Let us return to the EDQNM Mammoth-shape compensated spectra. As
stressed in Chapter 1, similar behaviors may be obtained from experimen-
tal data, with similar type of scalings, as reviewed for instance by Coantic
and Lasserre [47], who have developed an analytical model to account sat-
isfactorily for Reynolds-number changes in the experiments. The bump-
shaped spectrum had already been observed in the EDQNM calculations of
André and Lesieur [6]. The bump was interpreted as a “bottleneck effect” by
Falkovich [89]. We will return to this point later. Concerning the departure
from Kolmogorov similarity at small wavenumbers, we will see that the latter
cannot be achieved with the s = 8 value taken initially; it is only for s = 1
that it may hold.

4.3 EDQNM plateau-peak model

As we did for the deterministic velocity and scalar fluctuations, we split the
EDQNM kinetic-energy and scalar-variance transfers into interactions in-
volving only modes smaller than k¢ and those involving the others. The equa-
tions for the supergrid-scale velocity E(k, ¢) and scalar £ o(k, t) spectra are,
respectively,

0 -
(5 +2vk2> E(k,t) = Togo(k, 1) + Topo(k, 1) 4.13)
and
3+2k2Ekt—T” k,o)+ T (k. t 4.14
oy T 2K plk, ) =T, (k1) + T, (k. 1), (4.14)

where 7_y.(k,t) and T fkc(k, t) are the spectral transfers corresponding to
resolved triads such that k, p, ¢ < kc and T.y, (resp. T &) transfer to modes

> We recall that Lesieur ([170], pp. 190-191) has shown for an initial-value problem in the
framework of the Euler equation that, if s(z) grows with time, or remains constant, or even
decays slower than 7=, then enstrophy will blow up in a finite time.
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such that k < k¢, p and (or) ¢ > kc. We assume first that k < k¢ with both
modes being larger than £;, the kinetic-energy peak. Expansions in powers of
the small parameter 4/ k¢ yield to the lowest order

Too(k, t) = =20 K E(k, 1), (4.15)
1 [ AE(p. 1)
= _— | 6y, |5E(p.t — 22 dp, 4.16
Vi 15/](( o,vp[ (p.)+p o p (4.16)
T8 (k. 1) = =2k K Eq(k, 1), (4.17)
2 o0
K = gfk 00y E(p, 1) dp. (4.18)
C

Let us start by assuming a £~>/3 inertial range at wavenumbers greater than
kc. We obtain

v = 0.441 Cx 2 [ %‘jﬂm (4.19)

and
K = }‘)’i) (4.20)

with
Pr® = 0.6. 4.21)

Here, E(kc) is the kinetic-energy spectrum at the cutoff k¢. The 0.6 value for
the Prandtl number is in fact the highest one permitted by the choice of two
further adjustable constants arising in the EDQNM passive-scalar equation
(see [170]). If we assume for instance a Kolmogorov constant of 1.4 in the
energy cascade, the constant in front of Eq. (4.19) will be 0.267. When £ is
close to k¢, the numerical evaluation of the EDQNM transfers yields

Tk, t) = =2v(klkc) k* E (k. t) (4.22)
and

TP, (k1) = —2k(klkc) K E(k. 1) (4.23)

C
with

wklke) = K (i) P (4.24)
kc
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where v and «° are the asymptotic values given by Eqs (4.19), (4.20), and
(4.21), and K (x) and C(x) are nondimensional functions equal to 1 for x = 0.
As shown also by Kraichnan’s test-field model calculations [147], K(x) has
a plateau value at 1 up to k/kc & 1/3. Above, it displays a strong peak (cusp
behavior). Let us mention that Kraichnan did not point out the scaling of the
eddy viscosity against [ E (kc)/ kc]'/?, which turns out to be essential for LES
purposes. Indeed, when the energy spectrum decreases rapidly at infinity (for
instance during the initial stage of decay in isotropic turbulence), the eddy
viscosity will be very low and inactive. However, we have [E(k¢)/ kc]'/? ~
€'3k:*" in an inertial-range expression. If we keep this inertial-range-type
eddy viscosity before the establishment of the £~/3 range and evaluate €
as proportional to Ef/ Zk,-, it may substantially increase the eddy viscosity
and work against the cascade development. We will explain in the following
that the plateau-peak model may be generalized to spectra different from the
Kolmogorov one at the cutoff (spectral-dynamic model).

It was shown in [42] that C(x) behaves qualitatively as K(x) (plateau
at 1 and positive peak) and that the spectral turbulent Prandtl number
vi(klkc)/ki(k|kc) is approximately constant and thus equal to 0.6 as given
by Eq. (4.21). These three quantities (eddy viscosity, eddy diffusivity, and tur-
bulent Prandtl number) taken from [42] are shown in Figure 4.3 as a function

with Cx = 1.4.
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It is clear that the plateau part corresponds to the usual eddy-coefficients
assumption when one goes back to physical space,® and thus the “peak” part
goes beyond the scale-separation assumption inherent in the classical eddy-
viscosity and diffusivity concepts. The peak is mostly due to semilocal interac-
tions across kc: Near the cutoff wavenumber, the main nonlinear interactions
between the resolved and unresolved scales involve the smallest eddies of the
former and the largest eddies of the latter (such that p << k ~ ¢ ~ kc¢). The
peak also contains possible backscatter contributions (which are however very
small if k¢ lies in a Kolmogorov cascade) coming from subgrid modes larger
than kc. This point will be detailed in the following.

As shown in [43], the plateau-peak behavior of K (x) can be approximately
expresssed with the following analytical expression:

K(x)=1+4345¢30 (4.26)

We will see later another analytic expression of this spectral eddy viscosity in
terms of hyperviscosities.

The plateau-peak model consists of using these eddy viscosities in the
deterministic equations (4.1) and (4.3). One advantage of such a subgrid-
scale modeling is that it is correct from an energy-transfer viewpoint. It is
also able to deal with a continuous spectrum at the cutoff, which is a great
asset with respect to the plain eddy-viscosity assumption in physical space.
However, the assumption of real eddy coefficients is constraining and neglects
the possible phase effects arising in the neighborhood of k.

4.3.1 Spectral-dynamic model

Another drawback of the plateau-peak model is that it is restricted to the case
in which kc lies within a k=/3 Kolmogorov cascade. Fortunately, this can be
cured by introducing the spectral-dynamic model. We assume now that the
kinetic-energy spectrum is &< k=" for k > k¢ with m not necessarily equal to
5/3. We modify the spectral eddy viscosity as

i S—m  (k\[EGk)]”
klke) = 0.31 Cx 23 —m——K | — 4.27
vi(k|kc) K o 1 (kc>[ kc ] (#27

for m < 3. This expression is exact for k << k¢ within the same nonlocal
expansions of the EDQNM theory, as shown in Métais and Lesieur [205]. We
retain the peak shape through K (k/ kc) to be consistent with the Kolmogorov
spectrum expression of the eddy viscosity. For m > 3, the scaling is no longer

® There is, however, a slight difference at this level because going back to physical space
will give v™ multiplied by the filtered-velocity Laplacian, whereas, in the physical-space
formalism, the eddy viscosity is under a divergence operator in Eq. (3.19).
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valid, and the eddy viscosity will be set equal to zero. Indeed, we are very close
to a DNS for such spectra. In the spectral-dynamic model, the exponent m is
determined through the LES with the aid of least-squares fits of the kinetic-
energy spectrum close to the cutoff. We may also check that the turbulent
Prandtl number is given by

Pri=0.18 (5 —m) (4.28)

(see Métais and Lesieur [205] and Lesieur [170], p. 386). This value does not
depend of the Kolmogorov and model constants. Being able to use a variable
turbulent Prandtl number is a great advantage in LES of heated or variable-
density flows. This possibility exists also for the dynamic models in physical
space such as the dynamic Smagorinsky model presented in Chapter 3.

4.3.2 Spectral random backscatter

There are many discussions on LES related to the concept of random backscat-
ter, one aspect of which in physical space is the negativeness of the eddy
viscosity in local regions. We give here some elements of this discussion in
Fourier space. We return to the EDQNM kinetic-energy transfer 7'(k, 7) in
three-dimensional isotropic turbulence given by the r.h.s. of Eq. (4.5). Such a
transfer may be rewritten by a symmetrization with respect to p and ¢ in the in-
tegrand: In the first term a(k, p, q) = (1/2)[b(k, p, q) + b(k, g, p)] appears,
which may be shown to be positive (see Orszag [225] and Lesieur [170]).
The second term is proportional to k2 E(k, ). This ensures the realizability
(positiveness of the kinetic-energy spectrum) of the closure. We consider now
some arbitrary cutoff wavenumber k¢, which is not necessarily in the middle
of an inertial range. The subgrid kinetic-energy transfer across k¢ is then

Tio(k) = Aps — Bp, (4.29)

where Apg, the backscatter term, is given by

o) 1 2
1 —_

Aps = k4f dP/ ZZ
ke k/2p 4

2 2
x [1 +£ 4 (5 - zﬁz) } Oy E(P)E(q)dz. (430)
q q q

This term is obviously positive. The second term can be written as

o0 1
Bp =K*E(k) | dp / Brpy (1 — 27)
k¢ k/2p

Pt pz\ p P pz
y [(q_z . 7) 2 kg + (1 . W) E(pﬂ dz. (@31)
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These expressions can be simplified if & << k¢ (which implies that p and ¢
are of the same order). Then,

14 o0 E(p)*
Aps = —k* 0oy —=—dp, 432
BS 15 lc Opp p2 P ( )
Bp = 2v>®° K E(k), (4.33)

where the eddy viscosity v has been given in Eq. (4.16). If k and k¢ both
lie in the inertial range (with k << kc), the k* backscatter is of the order of
k490.kc,kck(_; 'E (kc)?, and the eddy-viscosity contribution is of the order of
k?E (k)00 kc.i-kc E (kc). Hence, in this case

Ass [k \? E(ko)
By (E) Ek)’
which is very small for any decreasing kinetic-energy spectrum. This justifies
the fact that the plateau part of the spectral eddy viscosity considered here
does not include any k* backscatter contribution. However, backscatter is
important when k is close to k¢, but the coefficient in front of k* is not a
simple function of k; moreover, it is difficult to tell the exact £ dependence of
the backscatter in this case or of the eddy-viscosity term Bp. What is certain
is that the plateau-peak eddy viscosity does properly include the backscatter
at the level of correct kinetic-energy exchanges.

In fact, the k* backscatter transfer plays an important role in the in-
frared part of the spectrum (kK — 0). We assume that kc = k; corresponds
to the peak of the spectrum and again £ << kc. Now the backscatter given by
Eq. (4.32) dominates the local transfers. It injects energy in very large scales
through resonant interaction of two energetic modes, and it is responsible for
the immediate emergence of an infrared k* spectrum in isotropic decaying tur-
bulence when energy is injected initially at a peak at &;. This point, predicted
by two-point closures (see Lesieur and Schertzer [164] and Lesieur [170]), was
first checked in LES of isotropic turbulence by Lesieur and Rogallo ([165];
see Figure 4.4) using the plateau-peak model, and we will confirm it with LES
using the spectral-dynamic model.

In forced stationary turbulence obtained when a random statistically sta-
tionary forcing is applied on a narrow spectral band around £;, the net infrared
transfer is given by the combination of the backscatter and the eddy-viscous
drain. It should vanish because the energy spectrum is time invariant. There is
then a balance between the k* backscatter and the k% E (k) drain, which yields
a k? equipartition spectrum.

We stress finally that in a turbulent mixing-layer calculation, Leith [162]
used a k* random backscatter forcing as a way to inject energy into the large
scales.

(4.34)
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4.4 Return to the bump

We have already mentioned for decaying isotropic turbulence the “bump”
existing at the edge of the Kolmogorov k—>/3 inertial range before the dissi-
pative range. In fact, forced EDQNM calculations with a narrow forcing at
k; do show the persistence of the bump (Mestayer et al. [203], Lesieur and
Ossia [174]). In the calculations of Mestayer et al. [203], the bump did dis-
appear with the removal of nonlocal triads (k, p, ¢) of the type k < ap (with
a ~2YF — 1 ~ 0.2 when taking F = 4). These elongated nonlocal interac-
tions correspond to an energy flux given by (see [170], p. 233, for details)

2 ¥ 2 ’ ’ ~ E
Nk, ) = — | KTE(K)dk Ovpp [SE(p) + p—1dp
15 Jo sup(k.k'/a) ap
14 * > E(p)?
-— / K*dk / Ok pp (—‘Z)dp. (4.35)
15 Jo sup(k,k' /) P

The first term in Eq. (4.35) is of the “eddy-viscous type”; the second is of the
“backscatter type,” but the latter may be checked to be negligible in the energy
cascade, as already stressed. No real explanation for the bump disappearance
is given in Mestayer et al. [203], who just note that “the bumps appear to result
mainly from a lack of erosion of the spectra by elongated non-local interactions
when approaching the viscous cutoff.” Falkovich [89] interpreted the bump
as a “bottleneck phenomenon . .. where a viscous suppression of small scale
modes removes some triads from nonlinear interactions . .. which leads to a
pileup of the energy in the inertial interval of scales.” In fact, this may be made
more quantitative by looking back at the evaluation of the elongated nonlocal
flux given by Eq. (4.35) carried out in [203]. It is positive and approximately
constant in the inertial range. We will assume that it would remain constant in
a k>3 range extending to infinity. However, because of its structure in terms
of integrals to infinity upon the energy spectrum, the elongated flux should
start to decrease rapidly when feeling nonlocally the dissipative range, which
is much further upstream. If we assume that the local and other nonlocal fluxes
are not yet affected by dissipation, and hence are still constant, the global flux
will be decreased, implying a positive kinetic-energy transfer, resulting in the
bump.

4.5 Other types of spectral eddy viscosities

4.5.1 Heisenberg’s eddy viscosity

In fact, the concept of a wavenumber-dependant eddy viscosity may already be
found in Heisenberg ([120], see also Mc Comb [200] for details). Heisenberg
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introduced this eddy viscosity to model the evolution of the kinetic-energy
spectrum. Within this model, and as recalled by Schumann [260], the deriva-
tive of the eddy viscosity with respect to & is proportional to —/E(k)/ k3.
If we assume some power-law dependence for the kinetic-energy spectrum,
Heisenberg’s eddy viscosity will indeed scale as \/ E(k)/ k. This is a type of
local spectral eddy viscosity, which is less rich than the nonlocal plateau-peak
formulation. Tt was used by Aubry et al. [10] to model equivalent subgrid
scales in the dynamical system describing the evolution of a turbulent bound-
ary layer within a proper orthogonal decomposition (POD) approach. We
recall that in the POD (see Holmes et al. [126] for a review), the velocity
vector is projected on the eigenvectors of the Reynolds-stress tensor. In this
context, ejection or sweep events occurring in the boundary layer appeared as
particular events in a chaotic dynamical system.

4.5.2 RNG analysis

Another approach, the renormalization group (RNG) method, originally de-
veloped by Forster et al. [97] and Fournier [99] for isotropic turbulence, has
been applied by Yakhot and Orszag [293] and McComb [200] to LES with
an eddy viscosity proportional to \/E (kc)/ kc. Let us recall briefly the RNG
formalism in Fournier’s work. In classical RNG analysis applied to the physics
of'critical phenomena, the dimension d of space is considered as a variable pa-
rameter. In general, the problem can be solved analytically for the dimension
d = 4. Then the solution for d = 4 — € is obtained from this solution through
expansions in powers of the parameter ¢, which is assumed to be small. The
solution for d = 3 is recovered by making € = 1. Although slightly awkward,
the procedure works remarkably well for various problems such as spin dy-
namics in ferromagnetic systems. Forster et al. [97] adapted the method to
the Navier—Stokes equation with a varying dimension of space. In contrast,
Fournier works with a fixed dimension of space (three), and he considers a
kinetic-energy forcing term proportional to k=" with a varying exponent 7.
One supposes at a given time that energy is distributed on a wavenumber inter-
val [0, A].Let A << A, andlet A — § A be a sort of cutoff wavenumber with
S8A /A fixed. The velocities corresponding to modes in the shell [A — §A, A]
are solved, through Feynman diagrammatic perturbation techniques involving
Green-function operators, in terms of modes smaller than A — § A. Statistical
independence between the “subgrid” and “supergrid” modes is further as-
sumed. A new Navier—Stokes equation with renormalized eddy viscosity and
forcing, involving the wavenumber interval [0, A — §A], is written. One has
thus eliminated (“decimated”) the shell [A — § A, A]. As stressed by Lesieur
([170] p. 253), other terms, called “nonpertinent,” still arise at this level, but
these will vanish after an infinite number of decimations. Then the operation
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is iterated an infinite number of times to let the cutoff A go to zero. The small
parameter here is € = 3 + r. For € > 0, one obtains (Fournier and Frisch
[100], Lesieur [170], p. 255) an eddy viscosity proportional to \/E(A)/A.
However, to obtain a Kolmogorov k=>/3 kinetic-energy spectrum requires
r = 1, so that the “small” parameter is now 4, which is excessive and cannot
guarantee the convergence of the expansions. Furthermore, this expression of
the renormalized eddy viscositiy is valid only for A — 0, whereas it is used
for LES purposes with a finite cutoff for which the nonpertinent terms cannot
be neglected. Finally, there is no general consensus about the determination
of the numerical constant arising in the eddy viscosity.

These results indicate that the plateau-peak model has the richest dynamics
of all the Heisenberg-type ~/ E(kc)/ kc eddy viscosities.

4.6 Anterior spectral LES of isotropic turbulence

The plateau-peak eddy viscosity was applied by Chollet and Lesieur [41] to
the first spectral LES of three-dimensional isotropic turbulence (a pseudo-
spectral method with a resolution of 323 Fourier collocation modes). They
studied decaying turbulence; there is no molecular viscosity,” and the initial
energy spectrum decreases rapidly at infinity. During the first stage the kinetic
energy is transferred toward kc accompanied by a growth of the resolved
enstrophy D(¢). At about four initial large-eddy turnover times D(0)~'/2,
the enstrophy reaches a maximum and decreases, whereas the kinetic-energy
spectrum decays self-similarly with an approximate k'3 slope.

Large-eddy simulations of a passive scalar at the same resolution were
performed by these authors in 1982 with qualitatively the same results and
the formation of a k=>/3 Corrsin—Oboukhov inertial-convective scalar spec-
trum. These results are presented in Lesieur ([170], p. 389). However, using
323 collocation points gives extremely low resolution and is totally unable to
capture the fine features of isotropic turbulence. We show in Figure 4.4 an
analogous LES at a resolution of 1283 Fourier modes?® carried out by Lesieur
and Rogallo [165]. The initial velocity and scalar spectra are proportional
with a Gaussian ultraviolet behavior and a k® infrared spectrum. It can be
checked that Kolmogorov and Corrsin—Oboukhov k=3 cascades are estab-
lished. Afterward, the kinetic-energy spectrum decays self-similarly with a
spectral slope between —5/3 and —2. The scalar spectrum seems to have a

7 It is a nice behavior of these large-eddy simulations to allow for “Euler LES” without any
numerical energy diffusion. The question posed is of course of the relevance of the solutions
found with respect to real solutions of Euler equations or of the Navier—Stokes equation in
the limit of zero viscosity.

§ Such a simulation was not dealiased, but it is now well recognized that, in contrast to DNS,
aliasing effects may be important in spectral LES and should be eliminated.
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Figure 4.4. Three-dimensional isotropic decaying turbulence showing decay of kinetic-energy
(a) and passive-scalar (b) spectra in the LES of Lesieur and Rogallo [165] using the plateau-peak
eddy viscosity.

very short inertial-convective range close to the cutoff and a very wide range
shallower than £~! in the large scales. Here, the scalar decays in time much
faster than the temperature. This anomalous range was explained by Métais
and Lesieur [205] as due to the quasi-two-dimensional character of the scalar
diffusion in the large scales, leading to large-scale intermittency of the scalar.
More precisely, the scalar diffusion seems to be dominated by the effect of
the coherent vortices already considered in Chapter 2. More details on this
anomalous k! range may be found in Lesieur ([170], p. 211).

4.6.1 Double filtering in Fourier space

These spectral LESs of decaying isotropic turbulence and associated scalar
mixing, together with those of Métais and Lesieur [205], have been used to
compute directly the spectral eddy viscosity and diffusivity. The method is
the same as that employed by Domaradzki et al. [70] for a DNS: One defines
a fictitious cutoftf wavenumber k(. = k¢/2 across which the kinetic-energy
transfer 7 and scalar transfer 77 are evaluated. Because we deal with a LES,
the latter corresponds to triadic interactions such that k < k-, p and (or)
g > ki and p, q < kc. These are termed T:k'gc(k, t) and T:kzkc(k, t). They
correspond to resolved transfers and satisfy energetic equalities of the type

T35k, t) = Togo(k, 1) — Toge (ko 1), (4.36)

/
>ke

where 7., and T, are the total kinetic energy transfers across k¢ and k. It
is important to note that Eq. (4.36) is the exact energetic equivalent in spectral
space of Germano’s identity if one works in Fourier space with sharp filters.
A similar relation holds for 7,/ <ke_Dividing these equations by —2k? E(k, t)
and —2k* E ,(k, t) gives the resolved spectral eddy-viscosity and diffusivity.
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Figure 4.5 shows these functions normalized by [ E(k(.)/ k-]'/?. Similar results
have been found in Lesieur and Rogallo [165]. The figure demonstrates that
the plateau-peak behavior does exist for the eddy viscosity but is questionable
for the eddy diffusivity. This anomaly is obviously related to the anomalous
scalar k~! range previously mentioned. It was stressed by Lesieur ([170],
p. 392) that this anomalous scalar range still exists in a DNS of decaying
isotropic turbulence: In this case, the double filtering yields a plateau-peak
eddy viscosity with a plateau value of approximately zero, as was discovered
by Domaradzki et al. [70]. The eddy diffusivity, in contrast, still behaves as
in the LES. In fact, Métais and Lesieur [205] have checked that the anomaly
disappears when the temperature is no longer passive and is coupled with
the velocity within the framework of the Boussinesq approximation (stable
stratification). It is possible that the same holds for compressible turbulence,
which would legitimize the use of the plateau-peak eddy diffusivity in this
case.

4.7 EDQNM infrared backscatter and self-similarity

We return now to the EDQNM analysis of Lesieur and Ossia [174] and show
that it is only at s = 1 that the kinetic-energy spectrum may have a global
self-similarity at entire scales from the energy-containing to the dissipative
ones. The derivation is borrowed from Lesieur and Schertzer [164], who
applied it to the EDQNM spectral equation. We present a generalization that
does not require use of closure. The first point is to remark that such a global
self-similarity necessarily implies that the integral and dissipative scales / and
Ip are proportional, with their ratio being time independent. If a Karman—
Howarth self-similarity is assumed, the kinetic-energy and transfer spectra

1.
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are, respectively,
E(k, 1) = v F(kI), Tk, t)=v® Ti(kD), 4.37)

where the functions F and 7 are nondimensional. We assume in fact that a
regime is reached such that all the quantities have an algebraic time depen-
dance, and thus we can write

E(k,t) =" G(K'), T(k,t)="72T'(k) (4.38)

with k' = k", v> oc t"™", and [ o t". Notice here that G and 7’ are dimen-
sional functions of the dimensional argument &’. Substituting these expres-
sions into the kinetic-energy spectrum evolution equation

VE
==+ 20KE = (k.. (4.39)
we obtain (after division by £>"=")/2)
dG
|:nG + mk/ﬁ] t(3m—n—2)/2 + 2vk/2G(k/)t—(m+n)/2 — T/(k/). (440)
]

In this equation, all the terms have to be time independent. We do have 3m —
n —2 =0 (a condition that we could have obtained by writing € ~ v?//)
and m + n = 0, which finally implies thatm = 1/2,n = —1/2, and a (such
that v> oc 17%) is equal to m — n = 1. It is a well-known result that such a
global self-similarity, when applied to the infrared spectrum, implies a further
condition. Indeed, relation (4.38) gives for an infrared kinetic-energy spectrum
oc t*k* (for which viscosity has a negligible effect if small enough)

Ys = n +ms (4.41)

and s = 1 +2y,. We know that (in the EDQNM framework where a k*
backscatter is assumed), y; is zero except for s = 4, where it is equal to
0.16 (see Lesieur and Schertzer [164] and Lesieur [170]), and the only pos-
sibility is thus s = 1. Hence, the large-scale Reynolds number R; should be
constant with time as well as R; ~ +/R;.

The question of permissible values for s is a controversial one. There are
arguments in favor of s = 4 (see the review of Davidson [62]) and others
in favor of s = 2 (Saffman [247]). Taking even values of s is compulsory if
certain regularity conditions are fulfilled for the velocity-correlation tensor
between two points when the distance goes to infinity. Mathematically, we
may take initially odd values of s (such as 1 or 3) and even noninteger ones,
as was proposed by Eyink and Thomson [88]. Working on the basis of an
analogy with Burgers turbulence studied by Gurbatov et al. [116] with DNS,
Eyink and Thomson propose the existence of a crossover dimension s ~ 3.45,
above which a k* backscatter should appear. The crossover value is obtained



